/tmp/solutions/build/range_affine_range_sum-main.cpp:
1| |#include <common.h>
2| |#include <toy/bit.h>
3| |prelude;
4| |
5| |namespace {
6| |
7| |constexpr int N = 1e6;
8| |constexpr int P = 998244353;
9| |
10| |struct affine {
11| | u32 a, b;
12| 6.95k| auto operator+(affine t) -> affine {
13| 6.95k| return {u32(u64(t.a) * a % P), u32((u64(t.a) * b + t.b) % P)};
14| 6.95k| }
15| 6.95k| auto operator+=(affine t) -> void { *this = *this + t; }
16| |};
17| |
18| |struct node {
19| | u32 siz;
20| | u32 sum;
21| | affine aff;
22| 6.95k| auto operator+=(affine t) -> void {
23| 6.95k| aff += t;
24| 6.95k| sum = (u64(t.a) * sum + u64(t.b) * siz) % P;
25| 6.95k| }
26| |} a[N];
27| |
28| 1.00k|void pushdown(int k) {
29| 4.02k| for (int i = log(k) - 1; i >= 0; --i) {
^3.01k
------------------
| Branch (29:28): [True: 75.00%, False: 25.00%]
------------------
30| 3.01k| affine t = a[k >> i >> 1].aff;
31| 3.01k| a[k >> i >> 1].aff = affine{1, 0};
32| 3.01k| a[k >> i ^ 0] += t;
33| 3.01k| a[k >> i ^ 1] += t;
34| 3.01k| }
35| 1.00k|}
36| |
37| 2.19k|u32 mod(u32 x) { return x < P ? x : x - P; }
^1.26k^926
------------------
| Branch (37:25): [True: 57.77%, False: 42.23%]
------------------
38| |
39| 1.00k|void pushup(int k) {
40| 2.69k| for (k /= 2; k > 0; k /= 2) {
^1.68k
------------------
| Branch (40:16): [True: 62.66%, False: 37.34%]
------------------
41| 1.68k| a[k].sum = mod(a[k * 2].sum + a[k * 2 + 1].sum);
42| 1.68k| }
43| 1.00k|}
44| |
45| |}; // namespace
46| |
47| 1|int main() {
48| 1| rd rd;
49| 1| wt wt;
50| 1| int n = rd.uh();
51| 1| int q = rd.uh();
52| 9| for (int i = 0; i < n; ++i) a[n + i].siz = 1, a[n + i].sum = rd.uw();
^8 ^8
------------------
| Branch (52:19): [True: 88.89%, False: 11.11%]
------------------
53| 9| for (int i = n - 1; i >= 0; --i) {
^8
------------------
| Branch (53:23): [True: 88.89%, False: 11.11%]
------------------
54| 8| a[i].aff = {1, 0};
55| 8| a[i].siz = a[2 * i].siz + a[2 * i + 1].siz;
56| 8| a[i].sum = mod(a[2 * i].sum + a[2 * i + 1].sum);
57| 8| }
58| 1.00k| while (q--) {
------------------
| Branch (58:10): [True: 99.90%, False: 0.10%]
------------------
59| 1.00k| let t = rd.u1();
60| 1.00k| if (t == 0) {
------------------
| Branch (60:9): [True: 50.30%, False: 49.70%]
------------------
61| 503| int l = n + rd.uh();
62| 503| int r = n + rd.uh() - 1;
63| 503| pushdown(l--);
64| 503| pushdown(r++);
65| 503| int k = log(l ^ r);
66| 503| affine x = {rd.uw(), rd.uw()};
67| 503| int t, i;
68| 973| for (t = ~l & ~(-1 << k), i = 31; t > 0; t -= 1 << i) {
^470
------------------
| Branch (68:41): [True: 48.30%, False: 51.70%]
------------------
69| 470| i = log(t);
70| 470| a[l >> i ^ 1] += x;
71| 470| }
72| 503| pushup(l >> i);
73| 951| for (t = +r & ~(-1 << k), i = 31; t > 0; t -= 1 << i) {
^448
------------------
| Branch (73:41): [True: 47.11%, False: 52.89%]
------------------
74| 448| i = log(t);
75| 448| a[r >> i ^ 1] += x;
76| 448| }
77| 503| pushup(r >> i);
78| 503| }
79| 1.00k| if (t == 1) {
------------------
| Branch (79:9): [True: 49.70%, False: 50.30%]
------------------
80| 497| int l = n + rd.uh();
81| 497| int r = n + rd.uh() - 1;
82| 497| u64 sizL = 0, sumL = 0;
83| 497| u64 sizR = 0, sumR = 0;
84| 1.75k| for (--l, ++r; l ^ r ^ 1;) {
------------------
| Branch (84:22): [True: 71.60%, False: 28.40%]
------------------
85| 1.25k| if (~l & 1) sizL += a[l ^ 1].siz, sumL += a[l ^ 1].sum;
^447
------------------
| Branch (85:13): [True: 35.67%, False: 64.33%]
------------------
86| 1.25k| if (+r & 1) sizR += a[r ^ 1].siz, sumR += a[r ^ 1].sum;
^444
------------------
| Branch (86:13): [True: 35.43%, False: 64.57%]
------------------
87| 1.25k| l /= 2, r /= 2;
88| 1.25k| sumL = (a[l].aff.a * sumL + a[l].aff.b * sizL) % P;
89| 1.25k| sumR = (a[r].aff.a * sumR + a[r].aff.b * sizR) % P;
90| 1.25k| }
91| 497| sumL = mod(u32(sumL + sumR));
92| 497| sizL += sizR;
93| 855| for (l /= 2; l > 0; l /= 2) {
^358
------------------
| Branch (93:20): [True: 41.87%, False: 58.13%]
------------------
94| 358| sumL = (a[l].aff.a * sumL + a[l].aff.b * sizL) % P;
95| 358| }
96| 497| wt.uw(u32(sumL));
97| 497| }
98| 1.00k| }
99| 1| return 0;
100| 1|}